top of page

PREDICTING

PROBABILITY OF ATTRITION

MODEL VALIDATION

CROSS-VALIDATION

 

We use 10-fold cross validation to validate our models.

 

R Code:

 

f#Cross Validation for full model

 

library(boot)

 

cost <- function(Attrition,pi=0)

                              {

                                    mean(abs(Attrition-pi)>0.5)

                               }

HR.glm<-glm(Attrition~.,binomial,data=HR)

 

(cv.err<-cv.glm(HR,HR.glm,cost,K=10)$delta[1])

 

[1] 0.1340136

 

 

backwd.glm<-glm(Attrition~.,binomial,data=HR)

 

(cv.err<-cv.glm(HR,backwd.glm,cost,K=10)$delta[1])

 

[1] 0.129932

 

      

 

The result shows that the model obtained by backward selection is associated with the lowest cross validation error and hence we will be using the full model for our prediction. 

Subscribe

Follow me:

  • Facebook Social Icon
  • LinkedIn Social Icon
bottom of page